Dynamic Time Warping

Uri Shaham

January 20, 2025

1 Similarity of time series

Figure 1: Euclidean similarity (top) DTW similarity.

2 Dynamic time warping

DTW computes an optimal alignment between s, t, under the following restrictions:

• Continuity of time: any index in s is matched with at least one index in t and vice versa.

- Boundary conditions: s[1] is matched with t[1], s[m] is matched with t[n].
- Monotonicity: if s[i] and s[j] are matched with t[k] and t[l], respectively, and $i \leq j$ then $k \leq l$ (i.e., the alignment does not go back in time)

The warped sequences are s', t' of respective length m' = n', and $m' \ge m, n' \ge n$.

The alignment is performed using dynamic programming, using a $(m+1) \times (n+1)$ matrix, DTW, such that DTW_{*i*,*j*} is the alignment cost between $(s[1], \ldots, s[i])$ and $(t[1], \ldots, t[j])$.

Algorithm 1 Dynamic time warping

Require: s, t, cost measure $c(\cdot, \cdot)$, (e.g., $c(x, y) = (x - y)^2$) **Initialize:** DTW = array[0...m, 0...n] for i = 1 to m do DTW_{i,0} = ∞ end for for j = 1 to n do DTW_{0,j} = ∞ end for **Compute alignment:** for i = 1 to m do for j = 1 to n do DTW_{i,j} = $c(s[i], t[j]) + \min{\{DTW_{i,j-1}, DTW_{i-1,j}, DTW_{i-1,j-1}\}}$ end for end for

Example:

İ	0	1	1	2	2	3	5
 0	0	inf	inf	inf	inf	inf	inf
 1	inf	0	0 1	1	2	4	8
2	inf	1	1	0+	-0	1	4
3	inf	3	3	1	1	8	2
5	inf	7	7	4	4	2	ġ
5	inf	11	11	7	7	4	0
5	inf	15	15	10	10	6	0
6	inf	20	20	14	14	9	1

Figure 2: DTW between s = "1235556" and t = "12335"

Interpretation:

- A horizontal move represents deletion. That means t accelerated during this interval.
- A horizontal move represents insertion. That means s accelerated during this interval.
- A diagonal move represents match. That means s and t had the same pace during this interval.

2.1 Adding a locality constraint

It is often desired to add a locality constraint, allowing to match s[i] and t[j] only if |i - j| is at most w, a window parameter (of course, w needs to be at least |n - m|, otherwise an alignment is not possible). The modified algorithm is left as a homework exercise.

Homework

- 1. Write the Pseudo code of DTW with locality constraint, implement it and provide the alignment on some interesting case.
- 2. What is the time and space complexity of DTW with and without locality constraint?
- 3. Find a small time series classification dataset, and implement a nearest neighbor classifier with DTW as the distance measure.